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With account taken of Stefan flow, an analysis of the interrelated heat and mass transfer of a carbon particle 
in parallel reactions on its surface is performed. 

When parallel reactions (C+02 --> C02 and 2C+02 -~ 2CO) proceed on the surface of a carbon particle, a 

Stefan flow develops which leads to a decrease in the oxidant mass flux and enhances heat removal [1-3 ]. The 

available literary sources [1-3 ] do not give in an explicit form the expressions for heat and mass fluxes, the power 

of heat releases, and the concentrations of gaseous components allowing for Stefan flow. Here we derive expressions 

for the interrelated heal and mass fluxes on the particle surface, surface power of heat release, and rates of 

heterogeneous reactions allowing for Stefan flow. Temperature and concentration profiles are obtained for the 

components in the gaseous phase. This enables us to perform an analysis of the influence of Stefan flow on the 

characteristics of heterogeneous combustion of a carbon particle: the induction period, the combustion time and 

temperatur e, and the critical conditions of heat and mass transfer (HMT) governing the limits of heterogeneous 

combustion [4-6 ]. 

Analyzing the heterogeneous ignition, combustion, and extinction of the carbon particle shows the need 

for taking account of two parallel reactions: C+02  --> C02(I) and 2C+02  ~ 2C0 (II) [4-6]. Since BiO << 1, the 

temperature gradient over the particle can be ignored. In this case the equation of heat balance for the particle 

appears as 

1 dT 1 
-6 clpld--d" t- = Qx - (Qz + QsO - Qr , 

The heat release power as a result of the heterogeneous reactions is 

Q x  = (klql + k2q2)P2RC1R , 

where 

(t = o) = G , .  (1) 

/ ' )  k I = k01 exp R T  1 , k 2 = k02 exp R T  1 . 

The density of the heat flux from the particle via molecules and via Stefan flow is 

OT2 I 
= = - + ( P 2 0 R  c 2 P 2 .  Oa st Q2 ac Qst ;1'2 ~ R 

The density of the heat flux by radiation is determined by the Kirchhoff and Stefan-Boltzmann laws: 

Q r - -  - 

(z) 

(3) 

To find C1R, (,O2V)R, and Q2 st, we need to solve diffusion, continuity, and heat conduction equations for 
the gaseous phase. Since the coefficients of thermal diffusivity and diffusion for the gaseous components are higher 
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than the coefficient of thermal diffusivity for the particle, the times in which stationary concentration and 

temperature fields are established in the gaseous phase can be considered as being smaller than the time in which 

a stationary field is established in the particle. This allows us to use for the gas the equations of stationary processes 

0 ( 2  OT2) 0 
Or r )~2 ~ = ~rr (c2T2 P2vr2) ' 

0(2  oc,) o 
Or r P2 D ~  = -~ (C/P2vr2) , 

0---(/92vr2 ) = 0 (4) 
Or 

We write the boundary conditions: 

4 4 
r 2 ( r = R ) = T 2 R ,  ~,C]R= 1; T 2 ( r = c ~ ) = T 2 ~ ,  ~ C ] ~ = 1 .  (5) 

1=I 1=1 

The density of the oxygen flux is 

]IR = P2RC1R (kl + k2)' 

of the C02 flux: 

J2R klP2RC1R (6) 
m 

/~2 ,Ul ' 

of the CO flux: 

JaR k2 P2RC1R 
2fl 3 ,Ul 

surface: 

of the nitrogen flux: J4n = O. 
The velocity of the Stefan flow is determined by the algebraic sum of the flux densities on the particle 

r (k 1 + 2k2)P2RC1R, (/92V)R = J2R + J3R -- JaR = -~1 
(7) 

where/~5 is the molar weight of the carbon. 
It is convenient to represent the solution (4) as 

2 )2 
d, p2D 7 c:-:,2D 7 3:, 

7"2- ('~ 3 
dr p2 D p2 D ' 

2 R 2 P2vr = (t02V)R = const. 

Introducing the new variable 

~ (P2V)R R 2 
= 2 

r p2 D r 
dr, 

we obtain 
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d (C/a; ~J) = - (Cj + fj)  , d (r  2 + p) 
d~ - (T2 + fl)" 

Using the boundary conditions (5) we have 

cj= [(qR- cj~) e -~ +c:.. e-~n - c]R J / ( e  -r - 1), ] = 1 ,  2,  3,  (8) 

C 4 = C4~ e -~ , 

T2 = [ (T2R - T2oo ) e-~ + T2oo e-~R -- T2R ] / ( e -~R  -- 1) . (9) 

If we ignore as a first approximation the change in p2D with distance 

(192V)R R 2 (p2V)R VRR 
p2 D r '  ~R-  p2 D D 

The density of the 02 mass flux to the particle surface via molecules and via Stefan flow is equal to the total rate 
of the chemical reactions 

OCI] _ 
J1R = DtgER -~r R (P2V)RC1R ----" P2RC1R (kl -I- k2). (10) 

Using (8) and (10) we obtain the equation for determining ~R: 

1 + Ft5 kl + 2k2 ] e -~R 
~tl k 1 + k 2 CI~ ) 

(D/R) 
kl + k 2 ~ R -  1 =0.  

We find the concentration of 02 on the particle surface from (7): 

/ (  'uS kl + 2k2) 
C1R = ~R IZl (D/R) 

Using (6), (8), and (12) we find the concentrations of CO2, CO, and N2: 

(11) 

(12) 

C2R = C2~ e -~R + /~2 kl (1 - e - ~ R ) ,  
/~5 kl + 2k2 

(13) 

/~3 2k2 e-~R) 
CaR = C3~ e-~R + ~S kl u 2k'2 (1 - (14) 

C4R = C4~ e -~R . 

We perform the analysis of the solutions (11). Let us introduce the function 

/t 5 k 1+ 2k 2 ) e_ ~ D/R 
(:I) (~) = I + /z 1 kl + k2 Cl~ ) kl + k2 ~ - 1 .  

From 

o~ ~) (~) < o 

it follows that ~(~) is a monotonically decreasing function. Furthermore, its sign changes in the interval (~1, ~2) 
where 
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/~5 kl + 2k2 } 
~1 = 0 ,  ~2 = in 1 +/Zl kl + k2 CI~ . 

It follows that Eq. (11) always has one and only one solution. 

As numerical calculations show, in many real cases ~g < 1. If we take e -~R = 1 - ~R Eq. 

solution 

/'5 (kl + 2k2) Cl oo 

~R -/'1 
'us (kl + 2k2) Ci oo (k 1 + ka) + (D/R) + 71 

Then by substituting (15) into (11), we obtain, in explicit form, the relationship between CIR and C10o: 

C1R = Clo ~ 1 + (DTR) + pt 1 (D/R) CI= , k = k t + k 2. 

The expansion 

e -~R= 1 - ~ n  + 1 ~ "  

is more accurate. Substituting it into (11), we find ~R: 

~ R - - B  + V  
2A 

where 

B2c) 
2A 2 A ' 

1[ . ,  ( , 
A = ~  1 + ~ 1  Cl~ l+kl+k---- ~ , 

B= 1+~-1| l+~:l+k------ ~ +~q+~-----~ ; 

C=-fi-[Cl~ l+kl+k--'-- ~ �9 

Using the relations obtained we find the equations for the heat and mass flux densities: 

Q2 st = Q;t + Qst = ~'2 (T2R _ T2 = e-~a) ~a 
R 1 - e -~R ' 

D e -~R ~R 
]IR = PER - -  (CI~ - C1R) e-~R �9 

R 1 -  

Using the quadratic expansion of e -~R we obtain the approximate equation for 

3t2 ( ~R (T2R + T2oo ) 
Q).s t=-~-(T2R--T2=)  l l  + - ~  (TzR--T2 ~ )  j . 

Or, in view of (15), by using the condition T2R = TIR = T 1 we have 

Q2st =ct  (T 1 - T2, ~)  
Pst 21-1 

i=l fl + 1 T1 _ T2 | , 

(11) has the 

(15) 

(16) 

(17) 

(18) 

(19) 
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Fig. 1. Influence of the oxidant concentration and particle temperature on the 

Stefan flow velocity in two parallel reactions on the particle surface: a) Tz~ = 
200 K; 1) R = 10-5; 2) 10-4; 3) 10-3; b) R = 10-4; 1) CI~ = 0.2; 2) 0.4; 3) 

0.6; 4) 0.8; 5) 1. T, K. 

where cz = 22/R , fl = D / R  are the heat and mass transfer coefficients; 

t~5 ~,ki  + k 2 CI~ �9 
Ps t=  ~1 i= 1 

For the oxygen flux density we have 

We find the gas density on the particle surface from the condition of an isobaric process 

4 4 4 Cj~ 

j= l  ~-/ /=1 fl-/ = P2oo T2~ 
j = l  ~J 

In view of (12)-(15) we have 

r• 
P2R = P2oo T2 R 

D / R  r k2) 
1 + ~ + ~ - 1  1 +-~-- CI~ 

~/R k2 c 1 ~ /  cj~ 1 + - - r - + T  ~'-V'~j=I F,j 

As a result we obtain the equations for the heterogeneous reaction rate and Qx: 

W = JIR = (kl + k2)P2RCI~ 

2 
ki +Pst 

i=1 

-1  

+ 1  
(20) 

Qx = (qlkl  § q2k2)P2RCl*o 

An equation for d(t) is obtained from the equality 

2 

ki + Pst 
i=l 

+ 1  

- 1  

(21) 
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1 
- -  2 " P l  

a (d) 
dt = (fllkl + 02k2) P2RC1 ~ 

2 
X ki + Pst 
i=1 

-1 

+ 1  (22) 

where f21 and f22 are the stoichiometric coefficients for the (I) and (II) reactions. 

We perform an analysis of the influence of temperature, oxidant concentration, and particle radius on the 

value of the Stefan flow. At low temperatures (T < 1000 K) the influence of the Stefan flow can be ignored. Figure 
1 shows that as the temperature increases, ~R initially increases drastically and subsequently changes slightly for 

all values of oxidant concentration. This has to do with the original "work" of the Arrhenius exponent (kinetic 
regime) followed at high temperatures, by that of the power dependence (diffusion regime). As the oxidant 
concentration increases, the velocity of the Stefan flow increases as the particle radius increases. For R > 100 t~m, 

the Stefan flow changes slightly with particle size. 
Therefore, we presented a physicomathematical model of the interrelated HMT and Stefan flow in two 

parallel reactions on the particle surface and analyzed the Stefan flow velocity as a function of temperature, oxidant 

concentration, and particle radius. Preliminary calculations of Eqs. (1) and (22) using (19) and (21) showed that 
taking into the Stefan flow enables us to explain the weak dependence of the combustion temperature on the gas 

temperature [1 ]. The equations obtained for Qx, Q2st, and chemical reaction rates enable us to determine the 

characteristics of stationary high- and low-temperature stable and critical states of a carbon particle in air. 

N O T A T I O N  

T, temperature, K; t, time, sec; p, density, kg/m3; c, specific heat, J/(kg-K); d, diameter; R, particle 

radius, m; 2, thermal conductivity coefficient, W/(m.  K); e, particle emissivity; v, Stefan flow velocity, m/sec; r, 

radial coordinate; C], relative mass concentration of the jth component;/x], molar weight, kg/mole; kl, k2, constants 

of the first and the second reaction rates, m/sec;/cOl and k02, preexponents; El, E2, activation energies, J/mole; 
D, diffusion coefficient, m2/sec; ~ = vRR/D, dimensionless value of the Stefan flow velocity; Qx, surface power of 

heat release, W/m2; Q~ st, density of the heat flux via heat conduction and Stefan flow, W/m2; Qr, density of the 

heat flux via radiation; ]], mass flux density; W, rate of the heterogeneous chemical reaction in 02, kg/(m 2" sec). 

Indexes: 1, particle; 2, gas; w, wall; st, Stefan; 0% infinitely distant; in, initial; R, on the particle surface; 2, by 

heat conduction; r, by radiation; j = 1, 02; j = 2, CO2; j = 3, CO; j = 4, N2. 
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